隔震支座的定义:隔震支座是一种特殊的建筑结构组件,设计用于在地震发生时隔离上部建筑结构与地面的直接连接,通过其自身的变形和耗能特性,吸收和分散地震能量,从而减少地震对建筑的影响。
盆式橡胶文座的内在质量主要是指支座各部件(橡胶、聚四氟乙烯板、不锈钢板、钢件等)的用料,必须符合质量要求,并在文座加工过程中均有严格的质量检验记录。
建筑摩擦摆隔震支座是一种利用单摆原理来延长结构自振周期,利用球面接触摩擦滑动来消耗能量的减隔震装置。它通常设置在上部结构(如建筑物的梁、板等)与下部结构(如桥墩、基础等)之间,通过“软连接”的方式,减小传递到结构中的侧向力和水平振动,使结构在地震下免受破坏。
现在主要介绍板式橡胶支座的劣化类型:建筑板式橡胶支座活动支座不活动、位移超限和转角超限等缺陷,通常由于设计不当造成,结果常引起锚栓剪断和摇轴或削扁辊轴倾斜度超差不能恢复等损伤。
否则会造成:支座垫石与盖梁或台帽顶面粘结不好,有脱空现象,通车后随车辆荷载上下反复变形,即上翘、下压。
另一个原因是基层处理不洁净,做建筑盆式橡胶支座前应仔细清理基层,不得有浮砂和灰尘,基层上更不应有FL隙,建筑盆式橡胶支座各层出现的气孔应按工艺要求处理,防止建筑盆式橡胶支座破坏造成渗漏。
铅芯橡胶支座(LRB)是含有铅芯的橡胶支座,含铅芯的隔震支座提高了隔震支座的阻尼比,增加了隔震支座的早期刚度,以便控制风反应和微震。
确定加劲钢板:TS=KPRCK(TES,U+TES,L)/AEσS式中TS为支座加劲钢板厚度;KP为应力校正系数,取1.3;TES,U、TES,L为一块加劲钢板上、下橡胶层厚度;σS为加劲钢板轴向拉应里限值。

检验项目及检验周期客运专线建筑盆式橡胶盆式橡胶支座用原材料及部件进厂后的检验项目及检验周期应符合表的规定。
同时绘出拉伸荷载与拉伸位移曲线,根据曲线的变变化趋势确定破坏时的拉应对被试橡胶支座在产品的设计压应力作用下,分别进行剪应变R=50%,F=0.3HZ;R=100%,F=0.2HZ;R=250%,F=0.1HZ的动力加载试验,水平加载波形为正弦波,大直径试件的加载频率可适当降低。
在四氟橡胶支座上加盖不锈钢板(厚度为3MM)和上钢板(厚度为18MM),上钢板的下平面采用机械加工成倒槽形。
附加建筑盆式橡胶支座层的涂刷方法、搭接、收头应按设计要求,粘接必须牢固,接缝封闭严密,无损伤、空鼓等缺陷。
支座安装后,应全面检查是否有支座漏放,支座安装方向、支座型式是否有错,临时固定设施是否拆除,四氟滑板支座安装时是否注入硅脂油(严禁使用润滑油代替硅脂油)等现象,一经发现,应及时调整和处理,确保支座安装后的正常工作,并应记录支座安装后出现的各项偏差及异常情况。
采用时程计算楼层剪力和楼层倾覆弯矩应当在设防烈度下计算。如果在小震下计算楼层内力,隔震支座可能还没有产生非线性反应,不能反应隔震支座的效果;如果在大震下计算,那么上部结构也有部分区域进入飞线性,将这样的计算结果代入小震设计是不合理的。只有在中震下,隔震结构的隔震层进入非线性耗能过程,而上部结构基本保持弹性,计算得到的减震系数才能用于弹性设计中。此外,隔震结构的设计目标应当在设防烈度下上部结构基本完好,这点在水平减震系数的计算上反应;
按跨逐跨整体顶升:断开每跨之间的桥面联系,使被顶升的桥跨称为完全简支,再使用顶升设备将整跨顶升后更换支座。这种方法施工时间较长,整个工程对交通的干扰较大。
铅芯橡胶支座的优势:一、除了本身的隔震力学性能满足抗震设计及使用要求外,铅芯隔震橡胶支座还具备耐久性好,抗低周期疲劳性能、抗热空气老化、抗臭氧老化、耐酸性、耐水性均较好,其寿命可达60~80年,期间的隔震力学性能不会发生明显变化,也就是说在60年之内不会影响使用,可见,与建筑物具有同等寿命。

这样的异常现象容易随着时间的增长,钢板锈蚀严重,导致支座受力不均或支座无法受力。这样就容易造成支座局部脱空,局部剪应变总过大,严重的甚至会造成支座胶层开裂,降低其使用寿命。这样可以延长橡胶支座的使用寿命。这一系列工序非常重要,它将影响混凝土的浇筑质量。这种类型的减(隔)震橡胶支座包括高阻尼性能的橡胶支座、普通橡胶支座和铅芯橡胶支座等。这种裂缝一般都要影响结构的安全,应进行必要的处理。
JT/T4一2004公路建筑板式橡胶支座JTGD60一2004公路桥涵设计通用规范JTGD62一2004公路钢筋混凝土及预应力混凝土桥涵设计规范GZJF4橡胶支座要求3.1支座产品分类、代号、结构、技术要求、试验方法、检验规则及标志、包装、贮存、运输、安装和养护均应满足JT/T4一2004的要求.3.1支座橡胶弹性体体积模量EB=2000MPA。
此后,建筑隔震技术相继写入各国抗震规范,应用数量大幅增加,其中80%以上采用叠层隔震橡胶支座。此时支座的竖向总变形将为各层薄橡胶片变形的总和。此外,板式橡胶支座安装时要保持位置准确,橡胶支座的中心要对准梁体轴线,防止偏心过大而损坏支座。此外,日本在制震方面还有一些新的研究成果。此外,橡胶支座能方便地适应任意方向的变形,故对于宽桥、曲线桥和斜桥均具有较好的适应性。此外,于桥墩不能横向弯曲,所以需要一排固定橡胶支座来保证当发生很小的横向位移时不产生应力。此外,在支座钢盆上缘口上设置的橡胶阻尼圈受地震力水平力等荷载作用后产生挤压变形,使地震能量得以释放。此外还有碱骨料反应、钢筋锈蚀等引起的裂缝。此外为防止加劲钢板的锈蚀,在板式像胶支座的上、下面及四周均应有橡胶保护层。此外支座应便于安装、荞护和维修,并在必要时进行更换。
当活动支座位移量大时,可在橡胶板顶面贴一片聚四氟已烯板,在梁底贴上不锈钢薄板,利用两者之间的摩阻力极小,来满足活动支座位移的需要。
这则消息传开后,当地的房地产开发商们颇为感兴,决定投资建设隔震楼盘,其中有决定用于一幢22层的高层楼。
多跨连续直梁桥在多跨结构中,橡胶支座的作用更为重要,因为结构的多跨连续要求较大的伸缩位移量,在这种结构中通常应使用金属橡胶支座,但在年温差和湿度差很小的情况下,仍可采用橡胶橡胶支座。
其作用是将上部结构的荷载(包括恒载和活载)顺适、安全地传递到建筑墩台上,同时要保证上部结构在支座处能自由变形(转动或移动),以便使结构的实际受力情况与计算简相符合。
一般来说,隔震建筑隔震层的抗拉能力比较薄弱,根据剪切型结构的特点,为了保证隔震结构的稳定性,确保隔震结构的抗倾覆能力及地震时有效防止上部结构与隔震层之间的脱离,应对隔震结构的高宽比加以控制。隔震结构的高宽比应满足下表的要求。当高宽比不满足要求时,应进行罕遇地震下的抗倾覆验算。同时还应对非地震作用的水平荷载(如风荷载)加以限制,一般应控制非地震作用的水平荷载不超过结构总重力的10%。这样做也可以有效保证隔震建筑的舒适性。

GZJF4橡胶支座使用阶段平均压应力бC=10MPA(S<7时бC=8MPA);橡胶硬度60(IRHD)时,其常温下剪变模量G=1.OMPA。
隔震技术是指在结构底部或某层之间设置由柔性隔震装置(如橡胶支座)组成的隔震层,形成水平刚度很小的“柔性结构”体系,如下图所示。
由于隔震层一般没有检修以外的其他使用功能,支座全在主楼范围布置时,隔震效率高;有些地方规定地下室顶面覆土必须N米以上才算绿化率,正好有助于解决本方案的室内外高差问题;略感头痛的是地下室的结构设计,如果按规范“隔震层以下结构云云”,用罕遇地震水平控制,在高烈度区就困难较大,有些工程对此打了折扣,也是被逼无奈。考虑地下室的使用,一般不宜直接将下支墩等截面延伸到地下室,可通过在地下室顶面设柱帽进行过渡转换,使地下室柱截面不致过大,相关的计算和构造需要认真考量。
板式橡胶支座位移超限板式橡胶支座位移超限是由厂设计及安装不当造成支座聚四氟乙烯板滑出不锈钢板板面范围。
当下支座板与墩台采用螺栓连接时,应先用钢楔块将下支座板四角调平,高程、位置应符合设计要求,用环氧砂浆灌注地脚螺栓孔及支座底面垫层。环氧砂浆硬化后,方可拆除四角钢楔,并用环氧砂浆填满楔块位置。
从以上原理及作用可以看出,摩擦摆支座在现代建筑结构中有着非常重要的作用和地位。它可以减轻自然灾害对建筑的危害和破坏,保护人员生命财产安全,使得建筑结构更加坚固、安全、可靠。
在我国,板式橡胶支座从1965年起出上海橡胶制品研究所、上海市政工程研究所和上海市政设计院等单位开始研制与试验,并先后在广东、上海、山东、广西、福建、江苏、浙江和安徽等地部分公路桥上使用。
耗能能力强:在滑动摩擦过程中能有效耗散地震能量,降低结构的内力和变形。



















